Real-Time FPGA Simulation of Surrogate Models of Large Spiking Networks
نویسندگان
چکیده
Models of neural systems often use idealized inputs and outputs, but there is also much to learn by forcing a neural model to interact with a complex simulated or physical environment. Unfortunately, sophisticated interactions require models of large neural systems, which are difficult to run in real time. We have prototyped a system that can simulate efficient surrogate models of a wide range of neural circuits in real time, with a field programmable gate array (FPGA). The scale of the simulations is increased by avoiding simulation of individual neurons, and instead simulating approximations of the collective activity of groups of neurons. The system can approximate roughly a million spiking neurons in a wide range of configurations.
منابع مشابه
A Novel Approach for the Implementation of Large Scale Spiking Neural Networks on FPGA Hardware
This paper presents a strategy for the implementation of large scale spiking neural network topologies on FPGA devices based on the I&F conductance model. Analysis of the logic requirements demonstrate that large scale implementations are not viable if a fully parallel implementation strategy is utilised. Thus the paper presents an alternative approach where a trade off in terms of speed/area i...
متن کاملFPGA implementation of ReSuMe learning in Spiking Neural Networks
Recent simulation experiments with ReSuMe learning in Spiking Neural Networks (SNN) indicate that the networks of spiking neurons can be successfully applied to control neuroprostheses1. However, when considering efficient, portable neurocontrollers, one has to deal with the constraints defined by the task at hand, that is the strict requirements for the real-time operating of the controller, i...
متن کاملAn FPGA Platform for Real-Time Simulation of Spiking Neuronal Networks
In the last years, the idea to dynamically interface biological neurons with artificial ones has become more and more urgent. The reason is essentially due to the design of innovative neuroprostheses where biological cell assemblies of the brain can be substituted by artificial ones. For closed-loop experiments with biological neuronal networks interfaced with in silico modeled networks, severa...
متن کاملCompact hardware liquid state machines on FPGA for real-time speech recognition
Hardware implementations of Spiking Neural Networks are numerous because they are well suited for implementation in digital and analog hardware, and outperform classic neural networks. This work presents an application driven digital hardware exploration where we implement real-time, isolated digit speech recognition using a Liquid State Machine. The Liquid State Machine is a recurrent neural n...
متن کاملA Large-Scale Spiking Neural Network Accelerator for FPGA Systems
Spiking neural networks (SNN) aim to mimic membrane potential dynamics of biological neurons. They have been used widely in neuromorphic applications and neuroscience modeling studies. We design a parallel SNN accelerator for producing large-scale cortical simulation targeting an off-theshelf Field-Programmable Gate Array (FPGA)-based system. The accelerator parallelizes synaptic processing wit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016